Characterization of a New SO₄²⁻-Stabilized Phase of BaCO₃

TADASHI NISHINO AND TADASHI SAKURAI

Laboratory of Inorganic Materials, Musashi Institute of Technology, Tamazutsumi, Setagaya-ku, Tokyo 158, Japan

and NOBUO ISHIZAWA, NOBUYASU MIZUTANI, and MASANORI KATO

Department of Inorganic Materials, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152, Japan

Received December 18, 1985; in revised form October 17, 1986

The structure and composition of a new SO₄²⁻-stabilized phase of barium carbonate, δ -BaCO₃, have been characterized. Fine crystalline powder of δ -BaCO₃ was prepared from BaCO₃ with a few mole% of BaSO₄ by heating at above 820°C and quenching into liquid nitrogen. The SO₄²⁻-stabilized δ -BaCO₃ has the chemical composition Ba(CO₃)_{1-x}(SO₄)_x with x ranging from 0 to 0.1 and is gradually decomposed into aragonite-type γ -BaCO₃ and BaSO₄ in the presence of water at room temperature. The Xray powder pattern of the substance was interpreted with the use of an automatic indexing computer program. The crystal data for δ -Ba(CO₃)_{0.9}(SO₄)_{0.1} are monoclinic, P2₁/m, a = 6.913(3), b = 5.295(1), c = 4.545(1) Å, β = 107.89(3)°, Z = 2, D_x = 4.21 g/cm³. A proposed structural model for δ -BaCO₃ in this paper has a close relation to a high-pressure metastable structure of calcium carbonate, CaCO₃(II). © 1987 Academic Press, Inc.

1. Introduction

It is well known that BaCO₃ has three kinds of polymorphs, γ -phase with aragonite structure, α -phase with calcite structure, and β -phase with a cubic structure (1). The thermal stability of the three phases is

 γ -phase $\stackrel{820^\circ C}{\longleftrightarrow} \alpha$ -phase $\stackrel{960^\circ C}{\longleftrightarrow} \beta$ -phase

Among these three phases, α - and β -phase are unquenchable and cannot be obtained at room temperature even if they are quenched into liquid nitrogen. Only γ phase is stable at room temperature.

One of the authors (T.S.) has found a new metastable crystalline phase of $BaCO_3$, 0022-4596/87 \$3.00 24

Copyright © 1987 by Academic Press, Inc. All rights of reproduction in any form reserved. named δ -phase, obtained by heating a mixture of γ -BaCO₃ and a few mole% of sulfate or chromate (such as BaSO₄ or SrCrO₄) near the γ - α phase transition temperature and quenching into liquid nitrogen (2, 3). The new δ -phase changes easily to γ -phase by reaction with water or by reheating to about 700°C in air. The structural stability of δ -phase is considered to be caused by a partial anion substitution of CO₃⁻ in the host lattice by SO₄²⁻ or CrO₄²⁻ with larger ionic size, in the following way:

$$(1 - x)BaCO_3 + xBaSO_4 \rightarrow Ba(CO_3)_{1-x}(SO_4)_x. \quad (1)$$

This paper describes the chemical analysis of the SO_4^{2-} solubility limit in Eq. (1) and

the crystal structure analysis by an X-ray powder diffraction method.

2. Experimental

2.1. Sample Preparation

BaCO₃ (Rare Metallic Co., Japan, 99.99% purity) and BaSO₄ (Merck's reagent) were weighed to desired compositions and mixed homogeneously for 1 hr with an agate mortar and pestle. The mixed powder was heated at 820°C for 30 min and rapidly quenched into liquid nitrogen.

2.2. Chemical Analysis

The SO_4^{2-} -stabilized δ -phase is decomposed into BaSO₄ and BaCO₃ in the presence of water as follows:

$$\delta - \operatorname{Ba}(\operatorname{CO}_3)_{1-x}(\operatorname{SO}_4)_x \xrightarrow{\operatorname{H}_2 \circ} (1-x)\gamma - \operatorname{BaCO}_3 + x \operatorname{BaSO}_4.$$
(2)

Among the products, γ -BaCO₃ dissolves into dilute acid solution while BaSO₄ is generally insoluble and forms extremely fine particles (60 nm) (3). These fine $BaSO_4$ particles become soluble when a strong acidic cation exchange resin coexists in solution. Thus, the amount of BaSO₄ in δ -phase was analyzed by the following procedure: (1) The calcined sample (100-150 mg) and 4.0 g of H-resin (Dowex 50W-X4) were suspended together in 3 ml of 1 M HCl aq. solution. (2) The suspension was filtered and the residue washed with 450 ml of distilled water. (3) The filtrate was adjusted to 500 ml in a volumetric flask with water. (4) The amount of SO_4^{2-} in the filtrate was measured using ion chromatography (Dionex Model 10).

The calcined specimen contains unreacted BaSO₄ particles in addition to fine δ particles when the starting amount of BaSO₄ exceeds the solubility limit in Eq. (1). These unreacted BaSO₄ particles became so large (400 nm) (3) during the calcination that their solubility in the acidic suspension with H-resin was negligible in comparison with that of the fine BaSO₄ formed by Eq. (2). Thus, the presence of the unreacted BaSO₄ presented little problem to the chemical analysis of the SO₄²⁻ concentration in δ -phase.

2.3. Crystal Structure Analysis

Powder X-ray diffraction data of δ-Ba- $(CO_3)_{0.9}(SO_4)_{0.1}$ were obtained by a diffractometer (Philips PW1700) with graphite monochromated CuK_{α} radiation. Step scanning technique was employed with a step size of 0.02° and a fixed counting time of 10 sec in the 2θ range 4°-100°. Peak positions were calculated by the digital filter method (4). Correction for the systematic angular error was carried out using Si powder as the external standard. Visser's indexing program (5), which is based on Ito's method (6) applicable to all crystal systems, was used to find the unit cell of δ -phase. After eliminating several weak peaks assigned to the γ -phase, the remaining 31 peaks in the range 4-57° were used as the input data of the program. All peaks were indexed with a monoclinic cell, resulting in a figure of merit (FOM) of 32.8. The FOM is defined as $Q_{obs}(20)/[2 \times \Delta Q \times N]$, where $Q_{obs}(n)$ is $d^* \times 10^4$ of the *n*th line, ΔQ is the mean difference between Q_{obs} and Q_{calc} , and N is the number of possible lines in the measured angular range (7). The FOM value obtained in the calculation indicates that the monoclinic unit cell is acceptable. The lattice constants were refined with a leastsquares procedure using RLC3 in the UN-ICS program system (8). Peaks corresponding to 0k0 reflections with k = oddwere systematically absent. Thus, the space group of δ -phase was limited to centrosymmetric $P2_1/m$ and noncentrosymmetric P2₁, assuming monoclinic symmetry. Comparing the unit cell volume of δ -phase to that of γ -phase, it was found that the former contained two BaCO₃ molecules in a unit cell.

The structure factors and the subsequent powder diffraction intensities were calculated using the program POWD10(9) on the basis of a structural model of δ -phase described later. The contribution of SO_4^{2-} was not included for the structure factor calculation, since the site occupancy of SO_4^{2-} is only 10% and the X-ray scattering powers of SO_4^{2-} and CO_3^{2-} are regarded as almost the same in comparison with that of Ba^{2+} in the first approximation. Isotropic temperature factors B, expressed in terms of ex $p(-B(\sin \theta/\lambda)^2)$, were assumed as 1.0 for Ba and O atoms and 0.5 for C. Atomic scattering factors for Ba, C, and O atoms and the dispersion correction factors for Ba atom were taken from "International Tables for X-Ray Crystallography" (10).

3. Results and Discussion

3.1. Chemical Composition

Figure 1 shows the relation between the amount of $BaSO_4$ substituted in the δ lattice and that added in the starting mixture. All $BaSO_4$ added in the range of 0–10 mole% can be perfectly exchanged with $BaCO_3$, but for more than 10 mole%, unreacted

FIG. 1. Plots of BaSO₄ solubility (exchanged BaSO₄/ added BaSO₄) (%) against added BaSO₄ (mole%).

TABLE I Crystal Data for δ -Ba(CO₃)_{0.9}(SO₄)_{0.1}

Crystal system	Monoclinic
Space group	$P2_1/m$
Cell dimensions	a = 6.913(3) Å
	b = 5.295(1) Å
	c = 4.545(1) Å
	$\beta = 107.89(3)^{\circ}$
Ζ	2
D _r	4.21 g/cm ³

BaSO₄ was found. Therefore, the maximum amount of substituted BaSO₄ is considered to be 10 mole%, that is, Ba(CO₃)_{0.9}(SO₄)_{0.1}.

3.2. Crystal Structure

Crystal data for δ -Ba(CO₃)_{0.9}(SO₄)_{0.1} are given in Table I. A typical X-ray diffraction pattern of the substance is given in Fig. 2. The crystal data for selected polymorphs of BaCO₃ and CaCO₃ are given in Table II for comparison. The structure of δ -BaCO₃ is closely related to that of $CaCO_3(II)$ (11), a high-pressure metastable phase of calcium carbonate. The β angles of δ -BaCO₃ and CaCO₃(II) are the same within a standard deviation. The a, b, and c axes of δ -BaCO₃ essentially correspond to a, b, and c/2 of CaCO₃(II), respectively, though their lengths are slightly different because of the size effect of cations with different ionic radii. If we assume the positional disorder of CO_3^{2-} group, the structure of δ -BaCO₃ can be derived from that of CaCO₃(II) as illustrated in Fig. 3. By shifting the Ca and C atoms to place them on the plane y = 0.25and 0.75 and arranging the CO_3^{2-} groups in the disordered state as shown in the figure, the c-glide plane in the CaCO₃(II) structure becomes the mirror plane at y = 0.25 and 0.75 and the c axis becomes halved. Accordingly, the space group of the structure changes from $P2_1/c$ to $P2_1/m$, which corresponds to one of the two possible space groups of δ -BaCO₃ determined by the powder X-ray analysis. The positional parame-

FIG. 2. Powder X-ray diffraction pattern (Cu K_{α}) of δ -Ba(CO₃)_{0.9}(SO₄)_{0.1}.

ters of atoms for the proposed structural model are listed in Table III. Observed and calculated peak intensities and interplanar spacings of δ -Ba(CO₃)_{0.9}(SO₄)_{0.1} are given in Table IV. Peak intensities calculated on the proposed model agreed well with the observed ones except for a few. Thus, the model is considered to be basically correct.

The structure of α -BaCO₃ at above 820°C has the halved c axis and the space group

Crystal system	BaCO ₃	CaCO ₃	
Cubic	$\beta - BaCO_{3}^{a}$ $a = 6.96 \text{ Å} (960^{\circ}\text{C})$	_	
	Z = 4. Fm3m		
Rhombohedral	α -BaCO ₃ ^a	Calcite ^b	
	$a = 5.205, c = 10.55 \text{ Å} (830^{\circ}\text{C})$	a = 4.990, c = 17.002 Å	
	$Z = 3, R\overline{3}m$	$Z = 6, R\overline{3}c$	
Orthorhombic	γ -BaCO ₃ ^c (witherite)	Aragonite ^b	
	a = 5.314, b = 8.904, c = 6.430 Å	a = 4.94, b = 7.94, c = 5.72 Å	
	Z = 4, Pmcn	Z = 4, Pmcn	
Monoclinic	δ-BaCO ₃ ^d	CaCO ₃ (II) ^e	
	a = 6.913, b = 5.295, c = 4.545 Å	a = 6.334, b = 4.984, c = 8.033 Å	
	$\beta = 107.89^{\circ}$	$\beta = 107.9^{\circ}$	
	$Z=2, P2_1/m$	$Z = 4, P2_1/c$	

TABLE II Crystal Data for Selected Barium and Calcium Carbonates

^a From Lander (1).

^b From Megaw (12).

^c From Swanson and Fuyat (13).

^d Present study.

^e From Merrill and Bassett (11).

FIG. 3. The crystal structure of (a) CaCO₃(II) (Merrill and Bassett, 11) and the proposed model of (b) δ -BaCO₃ viewed along the *b* axis. Large, medium, and small circles represent oxygen, calcium (or barium), and carbon atoms, respectively.

 $R\overline{3}m$ in comparison with the normal $R\overline{3}c$ calcite-type structure, which has been ascribed to the free rotation of CO_3^{2-} group around their triad axes (14). Thus, the structural change from α - to δ -phase can be described by assuming that the free rotation of CO_3^{2-} group is suddenly frozen in on quick cooling and that the resultant positional disorder of CO_3^{2-} group is introduced in the low-temperature form. In conclusion, it is strongly suggested that the metastable δ -phase quenched from α -BaCO₃ at high temperatures has a structure closely related to that of the high-pressure metastable Ca- $CO_3(II)$ except that the CO_3^{2-} groups are in a disordered state.

TABLE III Positional Parameters for 8-BaCO3 Structural Model

Atom	Multiplicity ^a	x	у	z
Ba	0.5	0.234	0.75	0.934
С	0.5	0.260	0.25	0.508
O(1)	0.5	0.380	0.156	0.774
O(2)	0.5	0.134	0.088	0.262
O(3)	0.5	0.221	0.490	0.434

^{*a*} Symmetry operations: $x, y, z; \bar{x}, \frac{1}{2} + y, \bar{z}; \bar{x}, \bar{y}, \bar{z}; x, \frac{1}{2} - y, z$.

ηκι	$a_{\rm obs}$	$a_{\rm calc}$	lobs	I calc
10 0	6.5559	6.5785	3	2
001	4.3168	4.3254	18	35
10-1	4.2554	4.2653	24	26
110	4.1169	4.1247	70	73
011	3.3462	3.3497		10
11-1		3.3216	fiou	100
200	3.2838	3.2893	50	52
10 1	3.1907	3.1920	5	5
20-1	3.1180	3.1205	7	8
210	2.7926	2.7940	5	3
11 1	2.7339	2.7337	3	31
21-1	2.6862	2.6883	24	2
020	2.6446	2.6473	23	18
120	2.4553	2.4559	<1	<1
10-2	2.2716	2.2720	17	8
021	2.2543	2.2580]	24
30-1		2.2551	<u> </u>	<1
303	2.1932	2.1928	2	2
002	2.1633	2.1627	4	4
21 1	2.1107	2.1095	20	8
11-2	2.0878	2.0879	6	13
31-1	2.0756	2.0747	12	29
220	2.0615	2.0623	13	18
121	2.0373	2.0377	13	8
22-1	2.0197	2.0187	20	20
012	2.0013	2.0021	8	9
21-2	1.9767	1.9782	12	7
102	1.8888	1.8895	2	7
30-2	1.8507	1.8499	7	2
112	1.7796	1.7796	1	5
12-2	1.7232	1.7241) 0	4
40-1		1.7231	۶ y	4
130	1.7038	1.7046	11	12
022	1.6761	1.6748	2	5
311	1.6620	1.6624	1.	6
22-2		1.6608	j i	6
031	1.6348	1.6341] 7	1
13-1		1.6301	∫ ′	8
202	1.5949	1.5960	2	2
410	1.5708	1.5706	1	1

TABLE IV

Observed and Calculated Interplanar Spacings and Intensities of the X-Ray Diffraction Pattern of δ -Ba(CO₃)_{0.9}(SO₄)_{0.1}

,

Acknowledgment

1.5560

23 0

The authors thank Mr. K. Nakamura of the Tokyo Institute of Technology for carrying out the computer work.

1.5552

1

1

References

- 1. J. J. LANDER, J. Chem. Phys. 17, 892 (1949).
- 2. T. NISHINO AND S. NISHIYAMA, *in* "Proceedings, 7th International Symposium on the Reactivity of Solids," p. 766 (1972).
- 3. T. NISHINO AND S. NISHIYAMA, J. Ceram. Soc. Japan (Yögyö Kyökaishi) 75, 12 (1967).
- 4. A. SAVITZKY AND M. GOLAY, Anal. Chem. 36, 1627 (1964).
- 5. J. W. VISSER, J. Appl. Crystallogr. 2, 89 (1969).
- T. ITO, "X-Ray Studies on Polymorphism," Maruzen, Tokyo (1950).
- 7. P. M. DE WOLFF, J. Appl. Crystallogr. 1, 108 (1968).
- T. SAKURAI, "Universal Crystallographic Computation Program System," p. 98, Cryst. Soc. Japan, Tokyo (1967).

- D. K. SMITH, N. C. NICHOLS, AND M. E. ZOLENSKY, "A Fortran IV Program for Calculating X-Ray Powder Patterns—Version 10," Pennsylvania State University, University Park, (1983).
- "International Tables for X-Ray Crystallography," Vol. IV, Kynoch Press, Birmingham, England (1984).
- 11. L. MERRILL AND W. A. BASSETT, Acta Crystallogr., Sect. B 31, 343 (1975).
- H. D. MEGAW, "Crystal Structures: A Working Approach," pp. 241–249, Saunders, London (1973).
- H. E. SWANSON AND R. K. FUYAT, NBS circular 539, Vol. II, p. 54 (1953); Structure Reports 16, 324 (1959).
- 14. K. O. STROMME, Acta Chem. Scand., Ser. A 29, 105 (1975).